Parallel Simulations of Dynamic Earthquake Rupture Along Geometrically Complex Faults on CMP Systems

نویسندگان

  • Xingfu Wu
  • Benchun Duan
  • Valerie Taylor
چکیده

Chip multiprocessors (CMP) are widely used for high performance computing and are being configured in a hierarchical manner to compose a CMP compute node in a CMP system. Such a CMP system provides a natural programming paradigm for hybrid MPI/OpenMP applications. In this paper, we use OpenMP to parallelize a sequential earthquake simulation code for modeling spontaneous earthquake rupture along geometrically complex faults on two CMP systems, IBM POWER5+ system and SUN Opteron server. The experimental results indicate that the OpenMP implementation has the accurate output results and the good scalability on the two CMP systems. We apply the optimization techniques such as large page and processor binding to the OpenMP implementation to achieve up to 7.05% performance improvement on the CMP systems without any code modification. Further, we illustrate an element-based partitioning scheme for explicit finite element methods. Based on the partitioning scheme and what we learn from the OpenMP implementation, we discuss how efficiently to use hybrid MPI/OpenMP to parallelize the sequential earthquake rupture simulation code in order to not only achieve multiple levels of parallelism of the code but also to reduce the communication overhead of MPI within a CMP node by taking advantage of the shared address space and on-chip high inter-core 314 Parallel Simulations of Dynamic Earthquake Rupture Along Geometrically Complex Faults on CMP Systems bandwidth and low inter-core latency. Our initial experimental results indicate that the hybrid MPI/OpenMP implementation obtains the accurate output results and has good scalability on CMP systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids

Article history: Received 15 December 2014 Received in revised form 12 October 2015 Accepted 13 October 2015 Available online 19 October 2015

متن کامل

Role of seismogenic depth and background stress on physical 1 limits of earthquake rupture across fault step - overs

11 Earthquakes can rupture geometrically complex fault systems by breaching fault step-overs. 12 Quantifying the likelihood of rupture jump across step-overs is important to evaluate earth13 quake hazard and to understand the interactions between dynamic rupture and fault growth 14 processes. Here we investigate the role of seismogenic depth and background stress on phys15 ical limits of earthq...

متن کامل

A Nitsche-extended finite element method for earthquake rupture on complex fault systems

The extended finite element method (XFEM) provides a natural way to incorporate strong and weak discontinuities into discretizations. It alleviates the need to mesh discontinuities, allowing simulation meshes to be nearly independent of discontinuity geometry. Currently, both quasistatic deformation and dynamic earthquake rupture simulations under standard FEM are limited to simplified fault ne...

متن کامل

Dynamic path selection along branched faults: Experiments involving sub-Rayleigh and supershear ruptures

[1] Building upon previous laboratory earthquake experiments of dynamic shear rupture growth taking place along faults with simple kinks, new and complex fault geometries involving cohesively held fault branches are studied. Asymmetric impact at the specimen boundaries controls the incoming shear ruptures, which are manipulated to propagate at either sub-Rayleigh or supershear velocities. High-...

متن کامل

The Dynamics of Thrust and Normal Faults over Multiple Earthquake Cycles: Effects of Dipping Fault Geometry

We perform dynamic simulations of thrust and normal faults over multiple earthquake cycles. Our goal is to explore effects of asymmetric fault geometry on the long-term seismicity and dynamics of dipping faults. A dynamic finite-element method is used to model the interseismic and coseismic processes, with a dynamic relaxation technique for the former. The faults are loaded by stable sliding al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010